HTML Standard
Aacute;
U+000C1
Á
Aacute
U+000C1
Á
aacute;
U+000E1
á
aacute
U+000E1
á
Abreve;
U+00102
Ă
abreve;
U+00103
ă
ac;
U+0223E
∾
acd;
U+0223F
∿
acE;
U+0223E U+00333
∾̳
Acirc;
U+000C2
Â
Acirc
U+000C2
Â
acirc;
U+000E2
â
acirc
U+000E2
â
acute;
U+000B4
´
acute
U+000B4
´
Acy;
U+00410
А
acy;
U+00430
а
AElig;
U+000C6
Æ
AElig
U+000C6
Æ
aelig;
U+000E6
æ
aelig
U+000E6
æ
af;
U+02061
Afr;
U+1D504
𝔄
afr;
U+1D51E
𝔞
Agrave;
U+000C0
À
Agrave
U+000C0
À
agrave;
U+000E0
à
agrave
U+000E0
à
alefsym;
U+02135
ℵ
aleph;
U+02135
ℵ
Alpha;
U+00391
Α
alpha;
U+003B1
α
Amacr;
U+00100
Ā
amacr;
U+00101
ā
amalg;
U+02A3F
⨿
AMP;
U+00026
&
AMP
U+00026
&
amp;
U+00026
&
amp
U+00026
&
And;
U+02A53
⩓
and;
U+02227
∧
andand;
U+02A55
⩕
andd;
U+02A5C
⩜
andslope;
U+02A58
⩘
andv;
U+02A5A
⩚
ang;
U+02220
∠
ange;
U+029A4
⦤
angle;
U+02220
∠
angmsd;
U+02221
∡
angmsdaa;
U+029A8
⦨
angmsdab;
U+029A9
⦩
angmsdac;
U+029AA
⦪
angmsdad;
U+029AB
⦫
angmsdae;
U+029AC
⦬
angmsdaf;
U+029AD
⦭
angmsdag;
U+029AE
⦮
angmsdah;
U+029AF
⦯
angrt;
U+0221F
∟
angrtvb;
U+022BE
⊾
angrtvbd;
U+0299D
⦝
angsph;
U+02222
∢
angst;
U+000C5
Å
angzarr;
U+0237C
⍼
Aogon;
U+00104
Ą
aogon;
U+00105
ą
Aopf;
U+1D538
𝔸
aopf;
U+1D552
𝕒
ap;
U+02248
≈
apacir;
U+02A6F
⩯
apE;
U+02A70
⩰
ape;
U+0224A
≊
apid;
U+0224B
≋
apos;
U+00027
‘
ApplyFunction;
U+02061
approx;
U+02248
≈
approxeq;
U+0224A
≊
Aring;
U+000C5
Å
Aring
U+000C5
Å
aring;
U+000E5
å
aring
U+000E5
å
Ascr;
U+1D49C
𝒜
ascr;
U+1D4B6
𝒶
Assign;
U+02254
≔
ast;
U+0002A
*
asymp;
U+02248
≈
asympeq;
U+0224D
≍
Atilde;
U+000C3
Ã
Atilde
U+000C3
Ã
atilde;
U+000E3
ã
atilde
U+000E3
ã
Auml;
U+000C4
Ä
Auml
U+000C4
Ä
auml;
U+000E4
ä
auml
U+000E4
ä
awconint;
U+02233
∳
awint;
U+02A11
⨑
backcong;
U+0224C
≌
backepsilon;
U+003F6
϶
backprime;
U+02035
‵
backsim;
U+0223D
∽
backsimeq;
U+022CD
⋍
Backslash;
U+02216
∖
Barv;
U+02AE7
⫧
barvee;
U+022BD
⊽
Barwed;
U+02306
⌆
barwed;
U+02305
⌅
barwedge;
U+02305
⌅
bbrk;
U+023B5
⎵
bbrktbrk;
U+023B6
⎶
bcong;
U+0224C
≌
Bcy;
U+00411
Б
bcy;
U+00431
б
bdquo;
U+0201E
„
becaus;
U+02235
∵
Because;
U+02235
∵
because;
U+02235
∵
bemptyv;
U+029B0
⦰
bepsi;
U+003F6
϶
bernou;
U+0212C
ℬ
Bernoullis;
U+0212C
ℬ
Beta;
U+00392
Β
beta;
U+003B2
β
beth;
U+02136
ℶ
between;
U+0226C
≬
Bfr;
U+1D505
𝔅
bfr;
U+1D51F
𝔟
bigcap;
U+022C2
⋂
bigcirc;
U+025EF
◯
bigcup;
U+022C3
⋃
bigodot;
U+02A00
⨀
bigoplus;
U+02A01
⨁
bigotimes;
U+02A02
⨂
bigsqcup;
U+02A06
⨆
bigstar;
U+02605
★
bigtriangledown;
U+025BD
▽
bigtriangleup;
U+025B3
△
biguplus;
U+02A04
⨄
bigvee;
U+022C1
⋁
bigwedge;
U+022C0
⋀
bkarow;
U+0290D
⤍
blacklozenge;
U+029EB
⧫
blacksquare;
U+025AA
▪
blacktriangle;
U+025B4
▴
blacktriangledown;
U+025BE
▾
blacktriangleleft;
U+025C2
◂
blacktriangleright;
U+025B8
▸
blank;
U+02423
␣
blk12;
U+02592
▒
blk14;
U+02591
░
blk34;
U+02593
▓
block;
U+02588
█
bne;
U+0003D U+020E5
=⃥
bnequiv;
U+02261 U+020E5
≡⃥
bNot;
U+02AED
⫭
bnot;
U+02310
⌐
Bopf;
U+1D539
𝔹
bopf;
U+1D553
𝕓
bot;
U+022A5
⊥
bottom;
U+022A5
⊥
bowtie;
U+022C8
⋈
boxbox;
U+029C9
⧉
boxDL;
U+02557
╗
boxDl;
U+02556
╖
boxdL;
U+02555
╕
boxdl;
U+02510
┐
boxDR;
U+02554
╔
boxDr;
U+02553
╓
boxdR;
U+02552
╒
boxdr;
U+0250C
┌
boxH;
U+02550
═
boxh;
U+02500
─
boxHD;
U+02566
╦
boxHd;
U+02564
╤
boxhD;
U+02565
╥
boxhd;
U+0252C
┬
boxHU;
U+02569
╩
boxHu;
U+02567
╧
boxhU;
U+02568
╨
boxhu;
U+02534
┴
boxminus;
U+0229F
⊟
boxplus;
U+0229E
⊞
boxtimes;
U+022A0
⊠
boxUL;
U+0255D
╝
boxUl;
U+0255C
╜
boxuL;
U+0255B
╛
boxul;
U+02518
┘
boxUR;
U+0255A
╚
boxUr;
U+02559
╙
boxuR;
U+02558
╘
boxur;
U+02514
└
boxV;
U+02551
║
boxv;
U+02502
│
boxVH;
U+0256C
╬
boxVh;
U+0256B
╫
boxvH;
U+0256A
╪
boxvh;
U+0253C
┼
boxVL;
U+02563
╣
boxVl;
U+02562
╢
boxvL;
U+02561
╡
boxvl;
U+02524
┤
boxVR;
U+02560
╠
boxVr;
U+0255F
╟
boxvR;
U+0255E
╞
boxvr;
U+0251C
├
bprime;
U+02035
‵
Breve;
U+002D8
˘
breve;
U+002D8
˘
brvbar;
U+000A6
¦
brvbar
U+000A6
¦
Bscr;
U+0212C
ℬ
bscr;
U+1D4B7
𝒷
bsemi;
U+0204F
⁏
bsim;
U+0223D
∽
bsime;
U+022CD
⋍
bsol;
U+0005C
\
bsolb;
U+029C5
⧅
bsolhsub;
U+027C8
⟈
bull;
U+02022
•
bullet;
U+02022
•
bump;
U+0224E
≎
bumpE;
U+02AAE
⪮
bumpe;
U+0224F
≏
Bumpeq;
U+0224E
≎
bumpeq;
U+0224F
≏
Cacute;
U+00106
Ć
cacute;
U+00107
ć
Cap;
U+022D2
⋒
cap;
U+02229
∩
capand;
U+02A44
⩄
capbrcup;
U+02A49
⩉
capcap;
U+02A4B
⩋
capcup;
U+02A47
⩇
capdot;
U+02A40
⩀
CapitalDifferentialD;
U+02145
ⅅ
caps;
U+02229 U+0FE00
∩︀
caret;
U+02041
⁁
caron;
U+002C7
ˇ
Cayleys;
U+0212D
ℭ
ccaps;
U+02A4D
⩍
Ccaron;
U+0010C
Č
ccaron;
U+0010D
č
Ccedil;
U+000C7
Ç
Ccedil
U+000C7
Ç
ccedil;
U+000E7
ç
ccedil
U+000E7
ç
Ccirc;
U+00108
Ĉ
ccirc;
U+00109
ĉ
Cconint;
U+02230
∰
ccups;
U+02A4C
⩌
ccupssm;
U+02A50
⩐
Cdot;
U+0010A
Ċ
cdot;
U+0010B
ċ
cedil;
U+000B8
¸
cedil
U+000B8
¸
Cedilla;
U+000B8
¸
cemptyv;
U+029B2
⦲
cent;
U+000A2
¢
cent
U+000A2
¢
CenterDot;
U+000B7
·
centerdot;
U+000B7
·
Cfr;
U+0212D
ℭ
cfr;
U+1D520
𝔠
CHcy;
U+00427
Ч
chcy;
U+00447
ч
check;
U+02713
✓
checkmark;
U+02713
✓
Chi;
U+003A7
Χ
chi;
U+003C7
χ
cir;
U+025CB
○
circ;
U+002C6
ˆ
circeq;
U+02257
≗
circlearrowleft;
U+021BA
↺
circlearrowright;
U+021BB
↻
circledast;
U+0229B
⊛
circledcirc;
U+0229A
⊚
circleddash;
U+0229D
⊝
CircleDot;
U+02299
⊙
circledR;
U+000AE
®
circledS;
U+024C8
Ⓢ
CircleMinus;
U+02296
⊖
CirclePlus;
U+02295
⊕
CircleTimes;
U+02297
⊗
cirE;
U+029C3
⧃
cire;
U+02257
≗
cirfnint;
U+02A10
⨐
cirmid;
U+02AEF
⫯
cirscir;
U+029C2
⧂
ClockwiseContourIntegral;
U+02232
∲
CloseCurlyDoubleQuote;
U+0201D
”
CloseCurlyQuote;
U+02019
’
clubs;
U+02663
♣
clubsuit;
U+02663
♣
Colon;
U+02237
∷
colon;
U+0003A
:
Colone;
U+02A74
⩴
colone;
U+02254
≔
coloneq;
U+02254
≔
comma;
U+0002C
,
commat;
U+00040
@
comp;
U+02201
∁
compfn;
U+02218
∘
complement;
U+02201
∁
complexes;
U+02102
ℂ
cong;
U+02245
≅
congdot;
U+02A6D
⩭
Congruent;
U+02261
≡
Conint;
U+0222F
∯
conint;
U+0222E
∮
ContourIntegral;
U+0222E
∮
Copf;
U+02102
ℂ
copf;
U+1D554
𝕔
coprod;
U+02210
∐
Coproduct;
U+02210
∐
COPY;
U+000A9
©
COPY
U+000A9
©
copy;
U+000A9
©
copy
U+000A9
©
copysr;
U+02117
℗
CounterClockwiseContourIntegral;
U+02233
∳
crarr;
U+021B5
↵
Cross;
U+02A2F
⨯
cross;
U+02717
✗
Cscr;
U+1D49E
𝒞
cscr;
U+1D4B8
𝒸
csub;
U+02ACF
⫏
csube;
U+02AD1
⫑
csup;
U+02AD0
⫐
csupe;
U+02AD2
⫒
ctdot;
U+022EF
⋯
cudarrl;
U+02938
⤸
cudarrr;
U+02935
⤵
cuepr;
U+022DE
⋞
cuesc;
U+022DF
⋟
cularr;
U+021B6
↶
cularrp;
U+0293D
⤽
Cup;
U+022D3
⋓
cup;
U+0222A
∪
cupbrcap;
U+02A48
⩈
CupCap;
U+0224D
≍
cupcap;
U+02A46
⩆
cupcup;
U+02A4A
⩊
cupdot;
U+0228D
⊍
cupor;
U+02A45
⩅
cups;
U+0222A U+0FE00
∪︀
curarr;
U+021B7
↷
curarrm;
U+0293C
⤼
curlyeqprec;
U+022DE
⋞
curlyeqsucc;
U+022DF
⋟
curlyvee;
U+022CE
⋎
curlywedge;
U+022CF
⋏
curren;
U+000A4
¤
curren
U+000A4
¤
curvearrowleft;
U+021B6
↶
curvearrowright;
U+021B7
↷
cuvee;
U+022CE
⋎
cuwed;
U+022CF
⋏
cwconint;
U+02232
∲
cwint;
U+02231
∱
cylcty;
U+0232D
⌭
Dagger;
U+02021
‡
dagger;
U+02020
†
daleth;
U+02138
ℸ
Darr;
U+021A1
↡
dArr;
U+021D3
⇓
darr;
U+02193
↓
dash;
U+02010
‐
Dashv;
U+02AE4
⫤
dashv;
U+022A3
⊣
dbkarow;
U+0290F
⤏
dblac;
U+002DD
˝
Dcaron;
U+0010E
Ď
dcaron;
U+0010F
ď
Dcy;
U+00414
Д
dcy;
U+00434
д
DD;
U+02145
ⅅ
dd;
U+02146
ⅆ
ddagger;
U+02021
‡
ddarr;
U+021CA
⇊
DDotrahd;
U+02911
⤑
ddotseq;
U+02A77
⩷
deg;
U+000B0
°
deg
U+000B0
°
Del;
U+02207
∇
Delta;
U+00394
Δ
delta;
U+003B4
δ
demptyv;
U+029B1
⦱
dfisht;
U+0297F
⥿
Dfr;
U+1D507
𝔇
dfr;
U+1D521
𝔡
dHar;
U+02965
⥥
dharl;
U+021C3
⇃
dharr;
U+021C2
⇂
DiacriticalAcute;
U+000B4
´
DiacriticalDot;
U+002D9
˙
DiacriticalDoubleAcute;
U+002DD
˝
DiacriticalGrave;
U+00060
`
DiacriticalTilde;
U+002DC
˜
diam;
U+022C4
⋄
Diamond;
U+022C4
⋄
diamond;
U+022C4
⋄
diamondsuit;
U+02666
♦
diams;
U+02666
♦
die;
U+000A8
¨
DifferentialD;
U+02146
ⅆ
digamma;
U+003DD
ϝ
disin;
U+022F2
⋲
div;
U+000F7
÷
divide;
U+000F7
÷
divide
U+000F7
÷
divideontimes;
U+022C7
⋇
divonx;
U+022C7
⋇
DJcy;
U+00402
Ђ
djcy;
U+00452
ђ
dlcorn;
U+0231E
⌞
dlcrop;
U+0230D
⌍
dollar;
U+00024
$
Dopf;
U+1D53B
𝔻
dopf;
U+1D555
𝕕
Dot;
U+000A8
¨
dot;
U+002D9
˙
DotDot;
U+020DC
◌⃜
doteq;
U+02250
≐
doteqdot;
U+02251
≑
DotEqual;
U+02250
≐
dotminus;
U+02238
∸
dotplus;
U+02214
∔
dotsquare;
U+022A1
⊡
doublebarwedge;
U+02306
⌆
DoubleContourIntegral;
U+0222F
∯
DoubleDot;
U+000A8
¨
DoubleDownArrow;
U+021D3
⇓
DoubleLeftArrow;
U+021D0
⇐
DoubleLeftRightArrow;
U+021D4
⇔
DoubleLeftTee;
U+02AE4
⫤
DoubleLongLeftArrow;
U+027F8
⟸
DoubleLongLeftRightArrow;
U+027FA
⟺
DoubleLongRightArrow;
U+027F9
⟹
DoubleRightArrow;
U+021D2
⇒
DoubleRightTee;
U+022A8
⊨
DoubleUpArrow;
U+021D1
⇑
DoubleUpDownArrow;
U+021D5
⇕
DoubleVerticalBar;
U+02225
∥
DownArrow;
U+02193
↓
Downarrow;
U+021D3
⇓
downarrow;
U+02193
↓
DownArrowBar;
U+02913
⤓
DownArrowUpArrow;
U+021F5
⇵
DownBreve;
U+00311
◌̑
downdownarrows;
U+021CA
⇊
downharpoonleft;
U+021C3
⇃
downharpoonright;
U+021C2
⇂
DownLeftRightVector;
U+02950
⥐
DownLeftTeeVector;
U+0295E
⥞
DownLeftVector;
U+021BD
↽
DownLeftVectorBar;
U+02956
⥖
DownRightTeeVector;
U+0295F
⥟
DownRightVector;
U+021C1
⇁
DownRightVectorBar;
U+02957
⥗
DownTee;
U+022A4
⊤
DownTeeArrow;
U+021A7
↧
drbkarow;
U+02910
⤐
drcorn;
U+0231F
⌟
drcrop;
U+0230C
⌌
Dscr;
U+1D49F
𝒟
dscr;
U+1D4B9
𝒹
DScy;
U+00405
Ѕ
dscy;
U+00455
ѕ
dsol;
U+029F6
⧶
Dstrok;
U+00110
Đ
dstrok;
U+00111
đ
dtdot;
U+022F1
⋱
dtri;
U+025BF
▿
dtrif;
U+025BE
▾
duarr;
U+021F5
⇵
duhar;
U+0296F
⥯
dwangle;
U+029A6
⦦
DZcy;
U+0040F
Џ
dzcy;
U+0045F
џ
dzigrarr;
U+027FF
⟿
Eacute;
U+000C9
É
Eacute
U+000C9
É
eacute;
U+000E9
é
eacute
U+000E9
é
easter;
U+02A6E
⩮
Ecaron;
U+0011A
Ě
ecaron;
U+0011B
ě
ecir;
U+02256
≖
Ecirc;
U+000CA
Ê
Ecirc
U+000CA
Ê
ecirc;
U+000EA
ê
ecirc
U+000EA
ê
ecolon;
U+02255
≕
Ecy;
U+0042D
Э
ecy;
U+0044D
э
eDDot;
U+02A77
⩷
Edot;
U+00116
Ė
eDot;
U+02251
≑
edot;
U+00117
ė
ee;
U+02147
ⅇ
efDot;
U+02252
≒
Efr;
U+1D508
𝔈
efr;
U+1D522
𝔢
eg;
U+02A9A
⪚
Egrave;
U+000C8
È
Egrave
U+000C8
È
egrave;
U+000E8
è
egrave
U+000E8
è
egs;
U+02A96
⪖
egsdot;
U+02A98
⪘
el;
U+02A99
⪙
Element;
U+02208
∈
elinters;
U+023E7
⏧
ell;
U+02113
ℓ
els;
U+02A95
⪕
elsdot;
U+02A97
⪗
Emacr;
U+00112
Ē
emacr;
U+00113
ē
empty;
U+02205
∅
emptyset;
U+02205
∅
EmptySmallSquare;
U+025FB
◻
emptyv;
U+02205
∅
EmptyVerySmallSquare;
U+025AB
▫
emsp;
U+02003
emsp13;
U+02004
emsp14;
U+02005
ENG;
U+0014A
Ŋ
eng;
U+0014B
ŋ
ensp;
U+02002
Eogon;
U+00118
Ę
eogon;
U+00119
ę
Eopf;
U+1D53C
𝔼
eopf;
U+1D556
𝕖
epar;
U+022D5
⋕
eparsl;
U+029E3
⧣
eplus;
U+02A71
⩱
epsi;
U+003B5
ε
Epsilon;
U+00395
Ε
epsilon;
U+003B5
ε
epsiv;
U+003F5
ϵ
eqcirc;
U+02256
≖
eqcolon;
U+02255
≕
eqsim;
U+02242
≂
eqslantgtr;
U+02A96
⪖
eqslantless;
U+02A95
⪕
Equal;
U+02A75
⩵
equals;
U+0003D
=
EqualTilde;
U+02242
≂
equest;
U+0225F
≟
Equilibrium;
U+021CC
⇌
equiv;
U+02261
≡
equivDD;
U+02A78
⩸
eqvparsl;
U+029E5
⧥
erarr;
U+02971
⥱
erDot;
U+02253
≓
Escr;
U+02130
ℰ
escr;
U+0212F
ℯ
esdot;
U+02250
≐
Esim;
U+02A73
⩳
esim;
U+02242
≂
Eta;
U+00397
Η
eta;
U+003B7
η
ETH;
U+000D0
Ð
ETH
U+000D0
Ð
eth;
U+000F0
ð
eth
U+000F0
ð
Euml;
U+000CB
Ë
Euml
U+000CB
Ë
euml;
U+000EB
ë
euml
U+000EB
ë
euro;
U+020AC
€
excl;
U+00021
!
exist;
U+02203
∃
Exists;
U+02203
∃
expectation;
U+02130
ℰ
ExponentialE;
U+02147
ⅇ
exponentiale;
U+02147
ⅇ
fallingdotseq;
U+02252
≒
Fcy;
U+00424
Ф
fcy;
U+00444
ф
female;
U+02640
♀
ffilig;
U+0FB03
ffi
fflig;
U+0FB00
ff
ffllig;
U+0FB04
ffl
Ffr;
U+1D509
𝔉
ffr;
U+1D523
𝔣
filig;
U+0FB01
fi
FilledSmallSquare;
U+025FC
◼
FilledVerySmallSquare;
U+025AA
▪
fjlig;
U+00066 U+0006A
fj
flat;
U+0266D
♭
fllig;
U+0FB02
fl
fltns;
U+025B1
▱
fnof;
U+00192
ƒ
Fopf;
U+1D53D
𝔽
fopf;
U+1D557
𝕗
ForAll;
U+02200
∀
forall;
U+02200
∀
fork;
U+022D4
⋔
forkv;
U+02AD9
⫙
Fouriertrf;
U+02131
ℱ
fpartint;
U+02A0D
⨍
frac12;
U+000BD
½
frac12
U+000BD
½
frac13;
U+02153
⅓
frac14;
U+000BC
¼
frac14
U+000BC
¼
frac15;
U+02155
⅕
frac16;
U+02159
⅙
frac18;
U+0215B
⅛
frac23;
U+02154
⅔
frac25;
U+02156
⅖
frac34;
U+000BE
¾
frac34
U+000BE
¾
frac35;
U+02157
⅗
frac38;
U+0215C
⅜
frac45;
U+02158
⅘
frac56;
U+0215A
⅚
frac58;
U+0215D
⅝
frac78;
U+0215E
⅞
frasl;
U+02044
⁄
frown;
U+02322
⌢
Fscr;
U+02131
ℱ
fscr;
U+1D4BB
𝒻
gacute;
U+001F5
ǵ
Gamma;
U+00393
Γ
gamma;
U+003B3
γ
Gammad;
U+003DC
Ϝ
gammad;
U+003DD
ϝ
gap;
U+02A86
⪆
Gbreve;
U+0011E
Ğ
gbreve;
U+0011F
ğ
Gcedil;
U+00122
Ģ
Gcirc;
U+0011C
Ĝ
gcirc;
U+0011D
ĝ
Gcy;
U+00413
Г
gcy;
U+00433
г
Gdot;
U+00120
Ġ
gdot;
U+00121
ġ
gE;
U+02267
≧
ge;
U+02265
≥
gEl;
U+02A8C
⪌
gel;
U+022DB
⋛
geq;
U+02265
≥
geqq;
U+02267
≧
geqslant;
U+02A7E
⩾
ges;
U+02A7E
⩾
gescc;
U+02AA9
⪩
gesdot;
U+02A80
⪀
gesdoto;
U+02A82
⪂
gesdotol;
U+02A84
⪄
gesl;
U+022DB U+0FE00
⋛︀
gesles;
U+02A94
⪔
Gfr;
U+1D50A
𝔊
gfr;
U+1D524
𝔤
Gg;
U+022D9
⋙
gg;
U+0226B
≫
ggg;
U+022D9
⋙
gimel;
U+02137
ℷ
GJcy;
U+00403
Ѓ
gjcy;
U+00453
ѓ
gl;
U+02277
≷
gla;
U+02AA5
⪥
glE;
U+02A92
⪒
glj;
U+02AA4
⪤
gnap;
U+02A8A
⪊
gnapprox;
U+02A8A
⪊
gnE;
U+02269
≩
gne;
U+02A88
⪈
gneq;
U+02A88
⪈
gneqq;
U+02269
≩
gnsim;
U+022E7
⋧
Gopf;
U+1D53E
𝔾
gopf;
U+1D558
𝕘
grave;
U+00060
`
GreaterEqual;
U+02265
≥
GreaterEqualLess;
U+022DB
⋛
GreaterFullEqual;
U+02267
≧
GreaterGreater;
U+02AA2
⪢
GreaterLess;
U+02277
≷
GreaterSlantEqual;
U+02A7E
⩾
GreaterTilde;
U+02273
≳
Gscr;
U+1D4A2
𝒢
gscr;
U+0210A
ℊ
gsim;
U+02273
≳
gsime;
U+02A8E
⪎
gsiml;
U+02A90
⪐
GT;
U+0003E
>
GT
U+0003E
>
Gt;
U+0226B
≫
gt;
U+0003E
>
gt
U+0003E
>
gtcc;
U+02AA7
⪧
gtcir;
U+02A7A
⩺
gtdot;
U+022D7
⋗
gtlPar;
U+02995
⦕
gtquest;
U+02A7C
⩼
gtrapprox;
U+02A86
⪆
gtrarr;
U+02978
⥸
gtrdot;
U+022D7
⋗
gtreqless;
U+022DB
⋛
gtreqqless;
U+02A8C
⪌
gtrless;
U+02277
≷
gtrsim;
U+02273
≳
gvertneqq;
U+02269 U+0FE00
≩︀
gvnE;
U+02269 U+0FE00
≩︀
Hacek;
U+002C7
ˇ
hairsp;
U+0200A
half;
U+000BD
½
hamilt;
U+0210B
ℋ
HARDcy;
U+0042A
Ъ
hardcy;
U+0044A
ъ
hArr;
U+021D4
⇔
harr;
U+02194
↔
harrcir;
U+02948
⥈
harrw;
U+021AD
↭
Hat;
U+0005E
^
hbar;
U+0210F
ℏ
Hcirc;
U+00124
Ĥ
hcirc;
U+00125
ĥ
hearts;
U+02665
♥
heartsuit;
U+02665
♥
hellip;
U+02026
…
hercon;
U+022B9
⊹
Hfr;
U+0210C
ℌ
hfr;
U+1D525
𝔥
HilbertSpace;
U+0210B
ℋ
hksearow;
U+02925
⤥
hkswarow;
U+02926
⤦
hoarr;
U+021FF
⇿
homtht;
U+0223B
∻
hookleftarrow;
U+021A9
↩
hookrightarrow;
U+021AA
↪
Hopf;
U+0210D
ℍ
hopf;
U+1D559
𝕙
horbar;
U+02015
―
HorizontalLine;
U+02500
─
Hscr;
U+0210B
ℋ
hscr;
U+1D4BD
𝒽
hslash;
U+0210F
ℏ
Hstrok;
U+00126
Ħ
hstrok;
U+00127
ħ
HumpDownHump;
U+0224E
≎
HumpEqual;
U+0224F
≏
hybull;
U+02043
⁃
hyphen;
U+02010
‐
Iacute;
U+000CD
Í
Iacute
U+000CD
Í
iacute;
U+000ED
í
iacute
U+000ED
í
ic;
U+02063
Icirc;
U+000CE
Î
Icirc
U+000CE
Î
icirc;
U+000EE
î
icirc
U+000EE
î
Icy;
U+00418
И
icy;
U+00438
и
Idot;
U+00130
İ
IEcy;
U+00415
Е
iecy;
U+00435
е
iexcl;
U+000A1
¡
iexcl
U+000A1
¡
iff;
U+021D4
⇔
Ifr;
U+02111
ℑ
ifr;
U+1D526
𝔦
Igrave;
U+000CC
Ì
Igrave
U+000CC
Ì
igrave;
U+000EC
ì
igrave
U+000EC
ì
ii;
U+02148
ⅈ
iiiint;
U+02A0C
⨌
iiint;
U+0222D
∭
iinfin;
U+029DC
⧜
iiota;
U+02129
℩
IJlig;
U+00132
IJ
ijlig;
U+00133
ij
Im;
U+02111
ℑ
Imacr;
U+0012A
Ī
imacr;
U+0012B
ī
image;
U+02111
ℑ
ImaginaryI;
U+02148
ⅈ
imagline;
U+02110
ℐ
imagpart;
U+02111
ℑ
imath;
U+00131
ı
imof;
U+022B7
⊷
imped;
U+001B5
Ƶ
Implies;
U+021D2
⇒
in;
U+02208
∈
incare;
U+02105
℅
infin;
U+0221E
∞
infintie;
U+029DD
⧝
inodot;
U+00131
ı
Int;
U+0222C
∬
int;
U+0222B
∫
intcal;
U+022BA
⊺
integers;
U+02124
ℤ
Integral;
U+0222B
∫
intercal;
U+022BA
⊺
Intersection;
U+022C2
⋂
intlarhk;
U+02A17
⨗
intprod;
U+02A3C
⨼
InvisibleComma;
U+02063
InvisibleTimes;
U+02062
IOcy;
U+00401
Ё
iocy;
U+00451
ё
Iogon;
U+0012E
Į
iogon;
U+0012F
į
Iopf;
U+1D540
𝕀
iopf;
U+1D55A
𝕚
Iota;
U+00399
Ι
iota;
U+003B9
ι
iprod;
U+02A3C
⨼
iquest;
U+000BF
¿
iquest
U+000BF
¿
Iscr;
U+02110
ℐ
iscr;
U+1D4BE
𝒾
isin;
U+02208
∈
isindot;
U+022F5
⋵
isinE;
U+022F9
⋹
isins;
U+022F4
⋴
isinsv;
U+022F3
⋳
isinv;
U+02208
∈
it;
U+02062
Itilde;
U+00128
Ĩ
itilde;
U+00129
ĩ
Iukcy;
U+00406
І
iukcy;
U+00456
і
Iuml;
U+000CF
Ï
Iuml
U+000CF
Ï
iuml;
U+000EF
ï
iuml
U+000EF
ï
Jcirc;
U+00134
Ĵ
jcirc;
U+00135
ĵ
Jcy;
U+00419
Й
jcy;
U+00439
й
Jfr;
U+1D50D
𝔍
jfr;
U+1D527
𝔧
jmath;
U+00237
ȷ
Jopf;
U+1D541
𝕁
jopf;
U+1D55B
𝕛
Jscr;
U+1D4A5
𝒥
jscr;
U+1D4BF
𝒿
Jsercy;
U+00408
Ј
jsercy;
U+00458
ј
Jukcy;
U+00404
Є
jukcy;
U+00454
є
Kappa;
U+0039A
Κ
kappa;
U+003BA
κ
kappav;
U+003F0
ϰ
Kcedil;
U+00136
Ķ
kcedil;
U+00137
ķ
Kcy;
U+0041A
К
kcy;
U+0043A
к
Kfr;
U+1D50E
𝔎
kfr;
U+1D528
𝔨
kgreen;
U+00138
ĸ
KHcy;
U+00425
Х
khcy;
U+00445
х
KJcy;
U+0040C
Ќ
kjcy;
U+0045C
ќ
Kopf;
U+1D542
𝕂
kopf;
U+1D55C
𝕜
Kscr;
U+1D4A6
𝒦
kscr;
U+1D4C0
𝓀
lAarr;
U+021DA
⇚
Lacute;
U+00139
Ĺ
lacute;
U+0013A
ĺ
laemptyv;
U+029B4
⦴
lagran;
U+02112
ℒ
Lambda;
U+0039B
Λ
lambda;
U+003BB
λ
Lang;
U+027EA
⟪
lang;
U+027E8
⟨
langd;
U+02991
⦑
langle;
U+027E8
⟨
lap;
U+02A85
⪅
Laplacetrf;
U+02112
ℒ
laquo;
U+000AB
«
laquo
U+000AB
«
Larr;
U+0219E
↞
lArr;
U+021D0
⇐
larr;
U+02190
←
larrb;
U+021E4
⇤
larrbfs;
U+0291F
⤟
larrfs;
U+0291D
⤝
larrhk;
U+021A9
↩
larrlp;
U+021AB
↫
larrpl;
U+02939
⤹
larrsim;
U+02973
⥳
larrtl;
U+021A2
↢
lat;
U+02AAB
⪫
lAtail;
U+0291B
⤛
latail;
U+02919
⤙
late;
U+02AAD
⪭
lates;
U+02AAD U+0FE00
⪭︀
lBarr;
U+0290E
⤎
lbarr;
U+0290C
⤌
lbbrk;
U+02772
❲
lbrace;
U+0007B
{
lbrack;
U+0005B
[
lbrke;
U+0298B
⦋
lbrksld;
U+0298F
⦏
lbrkslu;
U+0298D
⦍
Lcaron;
U+0013D
Ľ
lcaron;
U+0013E
ľ
Lcedil;
U+0013B
Ļ
lcedil;
U+0013C
ļ
lceil;
U+02308
⌈
lcub;
U+0007B
{
Lcy;
U+0041B
Л
lcy;
U+0043B
л
ldca;
U+02936
⤶
ldquo;
U+0201C
“
ldquor;
U+0201E
„
ldrdhar;
U+02967
⥧
ldrushar;
U+0294B
⥋
ldsh;
U+021B2
↲
lE;
U+02266
≦
le;
U+02264
≤
LeftAngleBracket;
U+027E8
⟨
LeftArrow;
U+02190
←
Leftarrow;
U+021D0
⇐
leftarrow;
U+02190
←
LeftArrowBar;
U+021E4
⇤
LeftArrowRightArrow;
U+021C6
⇆
leftarrowtail;
U+021A2
↢
LeftCeiling;
U+02308
⌈
LeftDoubleBracket;
U+027E6
⟦
LeftDownTeeVector;
U+02961
⥡
LeftDownVector;
U+021C3
⇃
LeftDownVectorBar;
U+02959
⥙
LeftFloor;
U+0230A
⌊
leftharpoondown;
U+021BD
↽
leftharpoonup;
U+021BC
↼
leftleftarrows;
U+021C7
⇇
LeftRightArrow;
U+02194
↔
Leftrightarrow;
U+021D4
⇔
leftrightarrow;
U+02194
↔
leftrightarrows;
U+021C6
⇆
leftrightharpoons;
U+021CB
⇋
leftrightsquigarrow;
U+021AD
↭
LeftRightVector;
U+0294E
⥎
LeftTee;
U+022A3
⊣
LeftTeeArrow;
U+021A4
↤
LeftTeeVector;
U+0295A
⥚
leftthreetimes;
U+022CB
⋋
LeftTriangle;
U+022B2
⊲
LeftTriangleBar;
U+029CF
⧏
LeftTriangleEqual;
U+022B4
⊴
LeftUpDownVector;
U+02951
⥑
LeftUpTeeVector;
U+02960
⥠
LeftUpVector;
U+021BF
↿
LeftUpVectorBar;
U+02958
⥘
LeftVector;
U+021BC
↼
LeftVectorBar;
U+02952
⥒
lEg;
U+02A8B
⪋
leg;
U+022DA
⋚
leq;
U+02264
≤
leqq;
U+02266
≦
leqslant;
U+02A7D
⩽
les;
U+02A7D
⩽
lescc;
U+02AA8
⪨
lesdot;
U+02A7F
⩿
lesdoto;
U+02A81
⪁
lesdotor;
U+02A83
⪃
lesg;
U+022DA U+0FE00
⋚︀
lesges;
U+02A93
⪓
lessapprox;
U+02A85
⪅
lessdot;
U+022D6
⋖
lesseqgtr;
U+022DA
⋚
lesseqqgtr;
U+02A8B
⪋
LessEqualGreater;
U+022DA
⋚
LessFullEqual;
U+02266
≦
LessGreater;
U+02276
≶
lessgtr;
U+02276
≶
LessLess;
U+02AA1
⪡
lesssim;
U+02272
≲
LessSlantEqual;
U+02A7D
⩽
LessTilde;
U+02272
≲
lfisht;
U+0297C
⥼
lfloor;
U+0230A
⌊
Lfr;
U+1D50F
𝔏
lfr;
U+1D529
𝔩
lg;
U+02276
≶
lgE;
U+02A91
⪑
lHar;
U+02962
⥢
lhard;
U+021BD
↽
lharu;
U+021BC
↼
lharul;
U+0296A
⥪
lhblk;
U+02584
▄
LJcy;
U+00409
Љ
ljcy;
U+00459
љ
Ll;
U+022D8
⋘
ll;
U+0226A
≪
llarr;
U+021C7
⇇
llcorner;
U+0231E
⌞
Lleftarrow;
U+021DA
⇚
llhard;
U+0296B
⥫
lltri;
U+025FA
◺
Lmidot;
U+0013F
Ŀ
lmidot;
U+00140
ŀ
lmoust;
U+023B0
⎰
lmoustache;
U+023B0
⎰
lnap;
U+02A89
⪉
lnapprox;
U+02A89
⪉
lnE;
U+02268
≨
lne;
U+02A87
⪇
lneq;
U+02A87
⪇
lneqq;
U+02268
≨
lnsim;
U+022E6
⋦
loang;
U+027EC
⟬
loarr;
U+021FD
⇽
lobrk;
U+027E6
⟦
LongLeftArrow;
U+027F5
⟵
Longleftarrow;
U+027F8
⟸
longleftarrow;
U+027F5
⟵
LongLeftRightArrow;
U+027F7
⟷
Longleftrightarrow;
U+027FA
⟺
longleftrightarrow;
U+027F7
⟷
longmapsto;
U+027FC
⟼
LongRightArrow;
U+027F6
⟶
Longrightarrow;
U+027F9
⟹
longrightarrow;
U+027F6
⟶
looparrowleft;
U+021AB
↫
looparrowright;
U+021AC
↬
lopar;
U+02985
⦅
Lopf;
U+1D543
𝕃
lopf;
U+1D55D
𝕝
loplus;
U+02A2D
⨭
lotimes;
U+02A34
⨴
lowast;
U+02217
∗
lowbar;
U+0005F
_
LowerLeftArrow;
U+02199
↙
LowerRightArrow;
U+02198
↘
loz;
U+025CA
◊
lozenge;
U+025CA
◊
lozf;
U+029EB
⧫
lpar;
U+00028
(
lparlt;
U+02993
⦓
lrarr;
U+021C6
⇆
lrcorner;
U+0231F
⌟
lrhar;
U+021CB
⇋
lrhard;
U+0296D
⥭
lrm;
U+0200E
lrtri;
U+022BF
⊿
lsaquo;
U+02039
‹
Lscr;
U+02112
ℒ
lscr;
U+1D4C1
𝓁
Lsh;
U+021B0
↰
lsh;
U+021B0
↰
lsim;
U+02272
≲
lsime;
U+02A8D
⪍
lsimg;
U+02A8F
⪏
lsqb;
U+0005B
[
lsquo;
U+02018
‘
lsquor;
U+0201A
‚
Lstrok;
U+00141
Ł
lstrok;
U+00142
ł
LT;
U+0003C
<
LT
U+0003C
<
Lt;
U+0226A
≪
lt;
U+0003C
<
lt
U+0003C
<
ltcc;
U+02AA6
⪦
ltcir;
U+02A79
⩹
ltdot;
U+022D6
⋖
lthree;
U+022CB
⋋
ltimes;
U+022C9
⋉
ltlarr;
U+02976
⥶
ltquest;
U+02A7B
⩻
ltri;
U+025C3
◃
ltrie;
U+022B4
⊴
ltrif;
U+025C2
◂
ltrPar;
U+02996
⦖
lurdshar;
U+0294A
⥊
luruhar;
U+02966
⥦
lvertneqq;
U+02268 U+0FE00
≨︀
lvnE;
U+02268 U+0FE00
≨︀
macr;
U+000AF
¯
macr
U+000AF
¯
male;
U+02642
♂
malt;
U+02720
✠
maltese;
U+02720
✠
Map;
U+02905
⤅
map;
U+021A6
↦
mapsto;
U+021A6
↦
mapstodown;
U+021A7
↧
mapstoleft;
U+021A4
↤
mapstoup;
U+021A5
↥
marker;
U+025AE
▮
mcomma;
U+02A29
⨩
Mcy;
U+0041C
М
mcy;
U+0043C
м
mdash;
U+02014
—
mDDot;
U+0223A
∺
measuredangle;
U+02221
∡
MediumSpace;
U+0205F
Mellintrf;
U+02133
ℳ
Mfr;
U+1D510
𝔐
mfr;
U+1D52A
𝔪
mho;
U+02127
℧
micro;
U+000B5
µ
micro
U+000B5
µ
mid;
U+02223
∣
midast;
U+0002A
*
midcir;
U+02AF0
⫰
middot;
U+000B7
·
middot
U+000B7
·
minus;
U+02212
−
minusb;
U+0229F
⊟
minusd;
U+02238
∸
minusdu;
U+02A2A
⨪
MinusPlus;
U+02213
∓
mlcp;
U+02ADB
⫛
mldr;
U+02026
…
mnplus;
U+02213
∓
models;
U+022A7
⊧
Mopf;
U+1D544
𝕄
mopf;
U+1D55E
𝕞
mp;
U+02213
∓
Mscr;
U+02133
ℳ
mscr;
U+1D4C2
𝓂
mstpos;
U+0223E
∾
Mu;
U+0039C
Μ
mu;
U+003BC
μ
multimap;
U+022B8
⊸
mumap;
U+022B8
⊸
nabla;
U+02207
∇
Nacute;
U+00143
Ń
nacute;
U+00144
ń
nang;
U+02220 U+020D2
∠⃒
nap;
U+02249
≉
napE;
U+02A70 U+00338
⩰̸
napid;
U+0224B U+00338
≋̸
napos;
U+00149
ʼn
napprox;
U+02249
≉
natur;
U+0266E
♮
natural;
U+0266E
♮
naturals;
U+02115
ℕ
nbsp;
U+000A0
nbsp
U+000A0
nbump;
U+0224E U+00338
≎̸
nbumpe;
U+0224F U+00338
≏̸
ncap;
U+02A43
⩃
Ncaron;
U+00147
Ň
ncaron;
U+00148
ň
Ncedil;
U+00145
Ņ
ncedil;
U+00146
ņ
ncong;
U+02247
≇
ncongdot;
U+02A6D U+00338
⩭̸
ncup;
U+02A42
⩂
Ncy;
U+0041D
Н
ncy;
U+0043D
н
ndash;
U+02013
–
ne;
U+02260
≠
nearhk;
U+02924
⤤
neArr;
U+021D7
⇗
nearr;
U+02197
↗
nearrow;
U+02197
↗
nedot;
U+02250 U+00338
≐̸
NegativeMediumSpace;
U+0200B
NegativeThickSpace;
U+0200B
NegativeThinSpace;
U+0200B
NegativeVeryThinSpace;
U+0200B
nequiv;
U+02262
≢
nesear;
U+02928
⤨
nesim;
U+02242 U+00338
≂̸
NestedGreaterGreater;
U+0226B
≫
NestedLessLess;
U+0226A
≪
NewLine;
U+0000A
␊
nexist;
U+02204
∄
nexists;
U+02204
∄
Nfr;
U+1D511
𝔑
nfr;
U+1D52B
𝔫
ngE;
U+02267 U+00338
≧̸
nge;
U+02271
≱
ngeq;
U+02271
≱
ngeqq;
U+02267 U+00338
≧̸
ngeqslant;
U+02A7E U+00338
⩾̸
nges;
U+02A7E U+00338
⩾̸
nGg;
U+022D9 U+00338
⋙̸
ngsim;
U+02275
≵
nGt;
U+0226B U+020D2
≫⃒
ngt;
U+0226F
≯
ngtr;
U+0226F
≯
nGtv;
U+0226B U+00338
≫̸
nhArr;
U+021CE
⇎
nharr;
U+021AE
↮
nhpar;
U+02AF2
⫲
ni;
U+0220B
∋
nis;
U+022FC
⋼
nisd;
U+022FA
⋺
niv;
U+0220B
∋
NJcy;
U+0040A
Њ
njcy;
U+0045A
њ
nlArr;
U+021CD
⇍
nlarr;
U+0219A
↚
nldr;
U+02025
‥
nlE;
U+02266 U+00338
≦̸
nle;
U+02270
≰
nLeftarrow;
U+021CD
⇍
nleftarrow;
U+0219A
↚
nLeftrightarrow;
U+021CE
⇎
nleftrightarrow;
U+021AE
↮
nleq;
U+02270
≰
nleqq;
U+02266 U+00338
≦̸
nleqslant;
U+02A7D U+00338
⩽̸
nles;
U+02A7D U+00338
⩽̸
nless;
U+0226E
≮
nLl;
U+022D8 U+00338
⋘̸
nlsim;
U+02274
≴
nLt;
U+0226A U+020D2
≪⃒
nlt;
U+0226E
≮
nltri;
U+022EA
⋪
nltrie;
U+022EC
⋬
nLtv;
U+0226A U+00338
≪̸
nmid;
U+02224
∤
NoBreak;
U+02060
NonBreakingSpace;
U+000A0
Nopf;
U+02115
ℕ
nopf;
U+1D55F
𝕟
Not;
U+02AEC
⫬
not;
U+000AC
¬
not
U+000AC
¬
NotCongruent;
U+02262
≢
NotCupCap;
U+0226D
≭
NotDoubleVerticalBar;
U+02226
∦
NotElement;
U+02209
∉
NotEqual;
U+02260
≠
NotEqualTilde;
U+02242 U+00338
≂̸
NotExists;
U+02204
∄
NotGreater;
U+0226F
≯
NotGreaterEqual;
U+02271
≱
NotGreaterFullEqual;
U+02267 U+00338
≧̸
NotGreaterGreater;
U+0226B U+00338
≫̸
NotGreaterLess;
U+02279
≹
NotGreaterSlantEqual;
U+02A7E U+00338
⩾̸
NotGreaterTilde;
U+02275
≵
NotHumpDownHump;
U+0224E U+00338
≎̸
NotHumpEqual;
U+0224F U+00338
≏̸
notin;
U+02209
∉
notindot;
U+022F5 U+00338
⋵̸
notinE;
U+022F9 U+00338
⋹̸
notinva;
U+02209
∉
notinvb;
U+022F7
⋷
notinvc;
U+022F6
⋶
NotLeftTriangle;
U+022EA
⋪
NotLeftTriangleBar;
U+029CF U+00338
⧏̸
NotLeftTriangleEqual;
U+022EC
⋬
NotLess;
U+0226E
≮
NotLessEqual;
U+02270
≰
NotLessGreater;
U+02278
≸
NotLessLess;
U+0226A U+00338
≪̸
NotLessSlantEqual;
U+02A7D U+00338
⩽̸
NotLessTilde;
U+02274
≴
NotNestedGreaterGreater;
U+02AA2 U+00338
⪢̸
NotNestedLessLess;
U+02AA1 U+00338
⪡̸
notni;
U+0220C
∌
notniva;
U+0220C
∌
notnivb;
U+022FE
⋾
notnivc;
U+022FD
⋽
NotPrecedes;
U+02280
⊀
NotPrecedesEqual;
U+02AAF U+00338
⪯̸
NotPrecedesSlantEqual;
U+022E0
⋠
NotReverseElement;
U+0220C
∌
NotRightTriangle;
U+022EB
⋫
NotRightTriangleBar;
U+029D0 U+00338
⧐̸
NotRightTriangleEqual;
U+022ED
⋭
NotSquareSubset;
U+0228F U+00338
⊏̸
NotSquareSubsetEqual;
U+022E2
⋢
NotSquareSuperset;
U+02290 U+00338
⊐̸
NotSquareSupersetEqual;
U+022E3
⋣
NotSubset;
U+02282 U+020D2
⊂⃒
NotSubsetEqual;
U+02288
⊈
NotSucceeds;
U+02281
⊁
NotSucceedsEqual;
U+02AB0 U+00338
⪰̸
NotSucceedsSlantEqual;
U+022E1
⋡
NotSucceedsTilde;
U+0227F U+00338
≿̸
NotSuperset;
U+02283 U+020D2
⊃⃒
NotSupersetEqual;
U+02289
⊉
NotTilde;
U+02241
≁
NotTildeEqual;
U+02244
≄
NotTildeFullEqual;
U+02247
≇
NotTildeTilde;
U+02249
≉
NotVerticalBar;
U+02224
∤
npar;
U+02226
∦
nparallel;
U+02226
∦
nparsl;
U+02AFD U+020E5
⫽⃥
npart;
U+02202 U+00338
∂̸
npolint;
U+02A14
⨔
npr;
U+02280
⊀
nprcue;
U+022E0
⋠
npre;
U+02AAF U+00338
⪯̸
nprec;
U+02280
⊀
npreceq;
U+02AAF U+00338
⪯̸
nrArr;
U+021CF
⇏
nrarr;
U+0219B
↛
nrarrc;
U+02933 U+00338
⤳̸
nrarrw;
U+0219D U+00338
↝̸
nRightarrow;
U+021CF
⇏
nrightarrow;
U+0219B
↛
nrtri;
U+022EB
⋫
nrtrie;
U+022ED
⋭
nsc;
U+02281
⊁
nsccue;
U+022E1
⋡
nsce;
U+02AB0 U+00338
⪰̸
Nscr;
U+1D4A9
𝒩
nscr;
U+1D4C3
𝓃
nshortmid;
U+02224
∤
nshortparallel;
U+02226
∦
nsim;
U+02241
≁
nsime;
U+02244
≄
nsimeq;
U+02244
≄
nsmid;
U+02224
∤
nspar;
U+02226
∦
nsqsube;
U+022E2
⋢
nsqsupe;
U+022E3
⋣
nsub;
U+02284
⊄
nsubE;
U+02AC5 U+00338
⫅̸
nsube;
U+02288
⊈
nsubset;
U+02282 U+020D2
⊂⃒
nsubseteq;
U+02288
⊈
nsubseteqq;
U+02AC5 U+00338
⫅̸
nsucc;
U+02281
⊁
nsucceq;
U+02AB0 U+00338
⪰̸
nsup;
U+02285
⊅
nsupE;
U+02AC6 U+00338
⫆̸
nsupe;
U+02289
⊉
nsupset;
U+02283 U+020D2
⊃⃒
nsupseteq;
U+02289
⊉
nsupseteqq;
U+02AC6 U+00338
⫆̸
ntgl;
U+02279
≹
Ntilde;
U+000D1
Ñ
Ntilde
U+000D1
Ñ
ntilde;
U+000F1
ñ
ntilde
U+000F1
ñ
ntlg;
U+02278
≸
ntriangleleft;
U+022EA
⋪
ntrianglelefteq;
U+022EC
⋬
ntriangleright;
U+022EB
⋫
ntrianglerighteq;
U+022ED
⋭
Nu;
U+0039D
Ν
nu;
U+003BD
ν
num;
U+00023
#
numero;
U+02116
№
numsp;
U+02007
nvap;
U+0224D U+020D2
≍⃒
nVDash;
U+022AF
⊯
nVdash;
U+022AE
⊮
nvDash;
U+022AD
⊭
nvdash;
U+022AC
⊬
nvge;
U+02265 U+020D2
≥⃒
nvgt;
U+0003E U+020D2
>⃒
nvHarr;
U+02904
⤄
nvinfin;
U+029DE
⧞
nvlArr;
U+02902
⤂
nvle;
U+02264 U+020D2
≤⃒
nvlt;
U+0003C U+020D2
<⃒
nvltrie;
U+022B4 U+020D2
⊴⃒
nvrArr;
U+02903
⤃
nvrtrie;
U+022B5 U+020D2
⊵⃒
nvsim;
U+0223C U+020D2
∼⃒
nwarhk;
U+02923
⤣
nwArr;
U+021D6
⇖
nwarr;
U+02196
↖
nwarrow;
U+02196
↖
nwnear;
U+02927
⤧
Oacute;
U+000D3
Ó
Oacute
U+000D3
Ó
oacute;
U+000F3
ó
oacute
U+000F3
ó
oast;
U+0229B
⊛
ocir;
U+0229A
⊚
Ocirc;
U+000D4
Ô
Ocirc
U+000D4
Ô
ocirc;
U+000F4
ô
ocirc
U+000F4
ô
Ocy;
U+0041E
О
ocy;
U+0043E
о
odash;
U+0229D
⊝
Odblac;
U+00150
Ő
odblac;
U+00151
ő
odiv;
U+02A38
⨸
odot;
U+02299
⊙
odsold;
U+029BC
⦼
OElig;
U+00152
Œ
oelig;
U+00153
œ
ofcir;
U+029BF
⦿
Ofr;
U+1D512
𝔒
ofr;
U+1D52C
𝔬
ogon;
U+002DB
˛
Ograve;
U+000D2
Ò
Ograve
U+000D2
Ò
ograve;
U+000F2
ò
ograve
U+000F2
ò
ogt;
U+029C1
⧁
ohbar;
U+029B5
⦵
ohm;
U+003A9
Ω
oint;
U+0222E
∮
olarr;
U+021BA
↺
olcir;
U+029BE
⦾
olcross;
U+029BB
⦻
oline;
U+0203E
‾
olt;
U+029C0
⧀
Omacr;
U+0014C
Ō
omacr;
U+0014D
ō
Omega;
U+003A9
Ω
omega;
U+003C9
ω
Omicron;
U+0039F
Ο
omicron;
U+003BF
ο
omid;
U+029B6
⦶
ominus;
U+02296
⊖
Oopf;
U+1D546
𝕆
oopf;
U+1D560
𝕠
opar;
U+029B7
⦷
OpenCurlyDoubleQuote;
U+0201C
“
OpenCurlyQuote;
U+02018
‘
operp;
U+029B9
⦹
oplus;
U+02295
⊕
Or;
U+02A54
⩔
or;
U+02228
∨
orarr;
U+021BB
↻
ord;
U+02A5D
⩝
order;
U+02134
ℴ
orderof;
U+02134
ℴ
ordf;
U+000AA
ª
ordf
U+000AA
ª
ordm;
U+000BA
º
ordm
U+000BA
º
origof;
U+022B6
⊶
oror;
U+02A56
⩖
orslope;
U+02A57
⩗
orv;
U+02A5B
⩛
oS;
U+024C8
Ⓢ
Oscr;
U+1D4AA
𝒪
oscr;
U+02134
ℴ
Oslash;
U+000D8
Ø
Oslash
U+000D8
Ø
oslash;
U+000F8
ø
oslash
U+000F8
ø
osol;
U+02298
⊘
Otilde;
U+000D5
Õ
Otilde
U+000D5
Õ
otilde;
U+000F5
õ
otilde
U+000F5
õ
Otimes;
U+02A37
⨷
otimes;
U+02297
⊗
otimesas;
U+02A36
⨶
Ouml;
U+000D6
Ö
Ouml
U+000D6
Ö
ouml;
U+000F6
ö
ouml
U+000F6
ö
ovbar;
U+0233D
⌽
OverBar;
U+0203E
‾
OverBrace;
U+023DE
⏞
OverBracket;
U+023B4
⎴
OverParenthesis;
U+023DC
⏜
par;
U+02225
∥
para;
U+000B6
¶
para
U+000B6
¶
parallel;
U+02225
∥
parsim;
U+02AF3
⫳
parsl;
U+02AFD
⫽
part;
U+02202
∂
PartialD;
U+02202
∂
Pcy;
U+0041F
П
pcy;
U+0043F
п
percnt;
U+00025
%
period;
U+0002E
.
permil;
U+02030
‰
perp;
U+022A5
⊥
pertenk;
U+02031
‱
Pfr;
U+1D513
𝔓
pfr;
U+1D52D
𝔭
Phi;
U+003A6
Φ
phi;
U+003C6
φ
phiv;
U+003D5
ϕ
phmmat;
U+02133
ℳ
phone;
U+0260E
☎
Pi;
U+003A0
Π
pi;
U+003C0
π
pitchfork;
U+022D4
⋔
piv;
U+003D6
ϖ
planck;
U+0210F
ℏ
planckh;
U+0210E
ℎ
plankv;
U+0210F
ℏ
plus;
U+0002B
+
plusacir;
U+02A23
⨣
plusb;
U+0229E
⊞
pluscir;
U+02A22
⨢
plusdo;
U+02214
∔
plusdu;
U+02A25
⨥
pluse;
U+02A72
⩲
PlusMinus;
U+000B1
±
plusmn;
U+000B1
±
plusmn
U+000B1
±
plussim;
U+02A26
⨦
plustwo;
U+02A27
⨧
pm;
U+000B1
±
Poincareplane;
U+0210C
ℌ
pointint;
U+02A15
⨕
Popf;
U+02119
ℙ
popf;
U+1D561
𝕡
pound;
U+000A3
£
pound
U+000A3
£
Pr;
U+02ABB
⪻
pr;
U+0227A
≺
prap;
U+02AB7
⪷
prcue;
U+0227C
≼
prE;
U+02AB3
⪳
pre;
U+02AAF
⪯
prec;
U+0227A
≺
precapprox;
U+02AB7
⪷
preccurlyeq;
U+0227C
≼
Precedes;
U+0227A
≺
PrecedesEqual;
U+02AAF
⪯
PrecedesSlantEqual;
U+0227C
≼
PrecedesTilde;
U+0227E
≾
preceq;
U+02AAF
⪯
precnapprox;
U+02AB9
⪹
precneqq;
U+02AB5
⪵
precnsim;
U+022E8
⋨
precsim;
U+0227E
≾
Prime;
U+02033
″
prime;
U+02032
′
primes;
U+02119
ℙ
prnap;
U+02AB9
⪹
prnE;
U+02AB5
⪵
prnsim;
U+022E8
⋨
prod;
U+0220F
∏
Product;
U+0220F
∏
profalar;
U+0232E
⌮
profline;
U+02312
⌒
profsurf;
U+02313
⌓
prop;
U+0221D
∝
Proportion;
U+02237
∷
Proportional;
U+0221D
∝
propto;
U+0221D
∝
prsim;
U+0227E
≾
prurel;
U+022B0
⊰
Pscr;
U+1D4AB
𝒫
pscr;
U+1D4C5
𝓅
Psi;
U+003A8
Ψ
psi;
U+003C8
ψ
puncsp;
U+02008
Qfr;
U+1D514
𝔔
qfr;
U+1D52E
𝔮
qint;
U+02A0C
⨌
Qopf;
U+0211A
ℚ
qopf;
U+1D562
𝕢
qprime;
U+02057
⁗
Qscr;
U+1D4AC
𝒬
qscr;
U+1D4C6
𝓆
quaternions;
U+0210D
ℍ
quatint;
U+02A16
⨖
quest;
U+0003F
?
questeq;
U+0225F
≟
QUOT;
U+00022
“
QUOT
U+00022
“
quot;
U+00022
“
quot
U+00022
“
rAarr;
U+021DB
⇛
race;
U+0223D U+00331
∽̱
Racute;
U+00154
Ŕ
racute;
U+00155
ŕ
radic;
U+0221A
√
raemptyv;
U+029B3
⦳
Rang;
U+027EB
⟫
rang;
U+027E9
⟩
rangd;
U+02992
⦒
range;
U+029A5
⦥
rangle;
U+027E9
⟩
raquo;
U+000BB
»
raquo
U+000BB
»
Rarr;
U+021A0
↠
rArr;
U+021D2
⇒
rarr;
U+02192
→
rarrap;
U+02975
⥵
rarrb;
U+021E5
⇥
rarrbfs;
U+02920
⤠
rarrc;
U+02933
⤳
rarrfs;
U+0291E
⤞
rarrhk;
U+021AA
↪
rarrlp;
U+021AC
↬
rarrpl;
U+02945
⥅
rarrsim;
U+02974
⥴
Rarrtl;
U+02916
⤖
rarrtl;
U+021A3
↣
rarrw;
U+0219D
↝
rAtail;
U+0291C
⤜
ratail;
U+0291A
⤚
ratio;
U+02236
∶
rationals;
U+0211A
ℚ
RBarr;
U+02910
⤐
rBarr;
U+0290F
⤏
rbarr;
U+0290D
⤍
rbbrk;
U+02773
❳
rbrace;
U+0007D
}
rbrack;
U+0005D
]
rbrke;
U+0298C
⦌
rbrksld;
U+0298E
⦎
rbrkslu;
U+02990
⦐
Rcaron;
U+00158
Ř
rcaron;
U+00159
ř
Rcedil;
U+00156
Ŗ
rcedil;
U+00157
ŗ
rceil;
U+02309
⌉
rcub;
U+0007D
}
Rcy;
U+00420
Р
rcy;
U+00440
р
rdca;
U+02937
⤷
rdldhar;
U+02969
⥩
rdquo;
U+0201D
”
rdquor;
U+0201D
”
rdsh;
U+021B3
↳
Re;
U+0211C
ℜ
real;
U+0211C
ℜ
realine;
U+0211B
ℛ
realpart;
U+0211C
ℜ
reals;
U+0211D
ℝ
rect;
U+025AD
▭
REG;
U+000AE
®
REG
U+000AE
®
reg;
U+000AE
®
reg
U+000AE
®
ReverseElement;
U+0220B
∋
ReverseEquilibrium;
U+021CB
⇋
ReverseUpEquilibrium;
U+0296F
⥯
rfisht;
U+0297D
⥽
rfloor;
U+0230B
⌋
Rfr;
U+0211C
ℜ
rfr;
U+1D52F
𝔯
rHar;
U+02964
⥤
rhard;
U+021C1
⇁
rharu;
U+021C0
⇀
rharul;
U+0296C
⥬
Rho;
U+003A1
Ρ
rho;
U+003C1
ρ
rhov;
U+003F1
ϱ
RightAngleBracket;
U+027E9
⟩
RightArrow;
U+02192
→
Rightarrow;
U+021D2
⇒
rightarrow;
U+02192
→
RightArrowBar;
U+021E5
⇥
RightArrowLeftArrow;
U+021C4
⇄
rightarrowtail;
U+021A3
↣
RightCeiling;
U+02309
⌉
RightDoubleBracket;
U+027E7
⟧
RightDownTeeVector;
U+0295D
⥝
RightDownVector;
U+021C2
⇂
RightDownVectorBar;
U+02955
⥕
RightFloor;
U+0230B
⌋
rightharpoondown;
U+021C1
⇁
rightharpoonup;
U+021C0
⇀
rightleftarrows;
U+021C4
⇄
rightleftharpoons;
U+021CC
⇌
rightrightarrows;
U+021C9
⇉
rightsquigarrow;
U+0219D
↝
RightTee;
U+022A2
⊢
RightTeeArrow;
U+021A6
↦
RightTeeVector;
U+0295B
⥛
rightthreetimes;
U+022CC
⋌
RightTriangle;
U+022B3
⊳
RightTriangleBar;
U+029D0
⧐
RightTriangleEqual;
U+022B5
⊵
RightUpDownVector;
U+0294F
⥏
RightUpTeeVector;
U+0295C
⥜
RightUpVector;
U+021BE
↾
RightUpVectorBar;
U+02954
⥔
RightVector;
U+021C0
⇀
RightVectorBar;
U+02953
⥓
ring;
U+002DA
˚
risingdotseq;
U+02253
≓
rlarr;
U+021C4
⇄
rlhar;
U+021CC
⇌
rlm;
U+0200F
rmoust;
U+023B1
⎱
rmoustache;
U+023B1
⎱
rnmid;
U+02AEE
⫮
roang;
U+027ED
⟭
roarr;
U+021FE
⇾
robrk;
U+027E7
⟧
ropar;
U+02986
⦆
Ropf;
U+0211D
ℝ
ropf;
U+1D563
𝕣
roplus;
U+02A2E
⨮
rotimes;
U+02A35
⨵
RoundImplies;
U+02970
⥰
rpar;
U+00029
)
rpargt;
U+02994
⦔
rppolint;
U+02A12
⨒
rrarr;
U+021C9
⇉
Rrightarrow;
U+021DB
⇛
rsaquo;
U+0203A
›
Rscr;
U+0211B
ℛ
rscr;
U+1D4C7
𝓇
Rsh;
U+021B1
↱
rsh;
U+021B1
↱
rsqb;
U+0005D
]
rsquo;
U+02019
’
rsquor;
U+02019
’
rthree;
U+022CC
⋌
rtimes;
U+022CA
⋊
rtri;
U+025B9
▹
rtrie;
U+022B5
⊵
rtrif;
U+025B8
▸
rtriltri;
U+029CE
⧎
RuleDelayed;
U+029F4
⧴
ruluhar;
U+02968
⥨
rx;
U+0211E
℞
Sacute;
U+0015A
Ś
sacute;
U+0015B
ś
sbquo;
U+0201A
‚
Sc;
U+02ABC
⪼
sc;
U+0227B
≻
scap;
U+02AB8
⪸
Scaron;
U+00160
Š
scaron;
U+00161
š
sccue;
U+0227D
≽
scE;
U+02AB4
⪴
sce;
U+02AB0
⪰
Scedil;
U+0015E
Ş
scedil;
U+0015F
ş
Scirc;
U+0015C
Ŝ
scirc;
U+0015D
ŝ
scnap;
U+02ABA
⪺
scnE;
U+02AB6
⪶
scnsim;
U+022E9
⋩
scpolint;
U+02A13
⨓
scsim;
U+0227F
≿
Scy;
U+00421
С
scy;
U+00441
с
sdot;
U+022C5
⋅
sdotb;
U+022A1
⊡
sdote;
U+02A66
⩦
searhk;
U+02925
⤥
seArr;
U+021D8
⇘
searr;
U+02198
↘
searrow;
U+02198
↘
sect;
U+000A7
§
sect
U+000A7
§
semi;
U+0003B
;
seswar;
U+02929
⤩
setminus;
U+02216
∖
setmn;
U+02216
∖
sext;
U+02736
✶
Sfr;
U+1D516
𝔖
sfr;
U+1D530
𝔰
sfrown;
U+02322
⌢
sharp;
U+0266F
♯
SHCHcy;
U+00429
Щ
shchcy;
U+00449
щ
SHcy;
U+00428
Ш
shcy;
U+00448
ш
ShortDownArrow;
U+02193
↓
ShortLeftArrow;
U+02190
←
shortmid;
U+02223
∣
shortparallel;
U+02225
∥
ShortRightArrow;
U+02192
→
ShortUpArrow;
U+02191
↑
shy;
U+000AD
shy
U+000AD
Sigma;
U+003A3
Σ
sigma;
U+003C3
σ
sigmaf;
U+003C2
ς
sigmav;
U+003C2
ς
sim;
U+0223C
∼
simdot;
U+02A6A
⩪
sime;
U+02243
≃
simeq;
U+02243
≃
simg;
U+02A9E
⪞
simgE;
U+02AA0
⪠
siml;
U+02A9D
⪝
simlE;
U+02A9F
⪟
simne;
U+02246
≆
simplus;
U+02A24
⨤
simrarr;
U+02972
⥲
slarr;
U+02190
←
SmallCircle;
U+02218
∘
smallsetminus;
U+02216
∖
smashp;
U+02A33
⨳
smeparsl;
U+029E4
⧤
smid;
U+02223
∣
smile;
U+02323
⌣
smt;
U+02AAA
⪪
smte;
U+02AAC
⪬
smtes;
U+02AAC U+0FE00
⪬︀
SOFTcy;
U+0042C
Ь
softcy;
U+0044C
ь
sol;
U+0002F
/
solb;
U+029C4
⧄
solbar;
U+0233F
⌿
Sopf;
U+1D54A
𝕊
sopf;
U+1D564
𝕤
spades;
U+02660
♠
spadesuit;
U+02660
♠
spar;
U+02225
∥
sqcap;
U+02293
⊓
sqcaps;
U+02293 U+0FE00
⊓︀
sqcup;
U+02294
⊔
sqcups;
U+02294 U+0FE00
⊔︀
Sqrt;
U+0221A
√
sqsub;
U+0228F
⊏
sqsube;
U+02291
⊑
sqsubset;
U+0228F
⊏
sqsubseteq;
U+02291
⊑
sqsup;
U+02290
⊐
sqsupe;
U+02292
⊒
sqsupset;
U+02290
⊐
sqsupseteq;
U+02292
⊒
squ;
U+025A1
□
Square;
U+025A1
□
square;
U+025A1
□
SquareIntersection;
U+02293
⊓
SquareSubset;
U+0228F
⊏
SquareSubsetEqual;
U+02291
⊑
SquareSuperset;
U+02290
⊐
SquareSupersetEqual;
U+02292
⊒
SquareUnion;
U+02294
⊔
squarf;
U+025AA
▪
squf;
U+025AA
▪
srarr;
U+02192
→
Sscr;
U+1D4AE
𝒮
sscr;
U+1D4C8
𝓈
ssetmn;
U+02216
∖
ssmile;
U+02323
⌣
sstarf;
U+022C6
⋆
Star;
U+022C6
⋆
star;
U+02606
☆
starf;
U+02605
★
straightepsilon;
U+003F5
ϵ
straightphi;
U+003D5
ϕ
strns;
U+000AF
¯
Sub;
U+022D0
⋐
sub;
U+02282
⊂
subdot;
U+02ABD
⪽
subE;
U+02AC5
⫅
sube;
U+02286
⊆
subedot;
U+02AC3
⫃
submult;
U+02AC1
⫁
subnE;
U+02ACB
⫋
subne;
U+0228A
⊊
subplus;
U+02ABF
⪿
subrarr;
U+02979
⥹
Subset;
U+022D0
⋐
subset;
U+02282
⊂
subseteq;
U+02286
⊆
subseteqq;
U+02AC5
⫅
SubsetEqual;
U+02286
⊆
subsetneq;
U+0228A
⊊
subsetneqq;
U+02ACB
⫋
subsim;
U+02AC7
⫇
subsub;
U+02AD5
⫕
subsup;
U+02AD3
⫓
succ;
U+0227B
≻
succapprox;
U+02AB8
⪸
succcurlyeq;
U+0227D
≽
Succeeds;
U+0227B
≻
SucceedsEqual;
U+02AB0
⪰
SucceedsSlantEqual;
U+0227D
≽
SucceedsTilde;
U+0227F
≿
succeq;
U+02AB0
⪰
succnapprox;
U+02ABA
⪺
succneqq;
U+02AB6
⪶
succnsim;
U+022E9
⋩
succsim;
U+0227F
≿
SuchThat;
U+0220B
∋
Sum;
U+02211
∑
sum;
U+02211
∑
sung;
U+0266A
♪
Sup;
U+022D1
⋑
sup;
U+02283
⊃
sup1;
U+000B9
¹
sup1
U+000B9
¹
sup2;
U+000B2
²
sup2
U+000B2
²
sup3;
U+000B3
³
sup3
U+000B3
³
supdot;
U+02ABE
⪾
supdsub;
U+02AD8
⫘
supE;
U+02AC6
⫆
supe;
U+02287
⊇
supedot;
U+02AC4
⫄
Superset;
U+02283
⊃
SupersetEqual;
U+02287
⊇
suphsol;
U+027C9
⟉
suphsub;
U+02AD7
⫗
suplarr;
U+0297B
⥻
supmult;
U+02AC2
⫂
supnE;
U+02ACC
⫌
supne;
U+0228B
⊋
supplus;
U+02AC0
⫀
Supset;
U+022D1
⋑
supset;
U+02283
⊃
supseteq;
U+02287
⊇
supseteqq;
U+02AC6
⫆
supsetneq;
U+0228B
⊋
supsetneqq;
U+02ACC
⫌
supsim;
U+02AC8
⫈
supsub;
U+02AD4
⫔
supsup;
U+02AD6
⫖
swarhk;
U+02926
⤦
swArr;
U+021D9
⇙
swarr;
U+02199
↙
swarrow;
U+02199
↙
swnwar;
U+0292A
⤪
szlig;
U+000DF
ß
szlig
U+000DF
ß
Tab;
U+00009
␉
target;
U+02316
⌖
Tau;
U+003A4
Τ
tau;
U+003C4
τ
tbrk;
U+023B4
⎴
Tcaron;
U+00164
Ť
tcaron;
U+00165
ť
Tcedil;
U+00162
Ţ
tcedil;
U+00163
ţ
Tcy;
U+00422
Т
tcy;
U+00442
т
tdot;
U+020DB
◌⃛
telrec;
U+02315
⌕
Tfr;
U+1D517
𝔗
tfr;
U+1D531
𝔱
there4;
U+02234
∴
Therefore;
U+02234
∴
therefore;
U+02234
∴
Theta;
U+00398
Θ
theta;
U+003B8
θ
thetasym;
U+003D1
ϑ
thetav;
U+003D1
ϑ
thickapprox;
U+02248
≈
thicksim;
U+0223C
∼
ThickSpace;
U+0205F U+0200A
thinsp;
U+02009
ThinSpace;
U+02009
thkap;
U+02248
≈
thksim;
U+0223C
∼
THORN;
U+000DE
Þ
THORN
U+000DE
Þ
thorn;
U+000FE
þ
thorn
U+000FE
þ
Tilde;
U+0223C
∼
tilde;
U+002DC
˜
TildeEqual;
U+02243
≃
TildeFullEqual;
U+02245
≅
TildeTilde;
U+02248
≈
times;
U+000D7
×
times
U+000D7
×
timesb;
U+022A0
⊠
timesbar;
U+02A31
⨱
timesd;
U+02A30
⨰
tint;
U+0222D
∭
toea;
U+02928
⤨
top;
U+022A4
⊤
topbot;
U+02336
⌶
topcir;
U+02AF1
⫱
Topf;
U+1D54B
𝕋
topf;
U+1D565
𝕥
topfork;
U+02ADA
⫚
tosa;
U+02929
⤩
tprime;
U+02034
‴
TRADE;
U+02122
™
trade;
U+02122
™
triangle;
U+025B5
▵
triangledown;
U+025BF
▿
triangleleft;
U+025C3
◃
trianglelefteq;
U+022B4
⊴
triangleq;
U+0225C
≜
triangleright;
U+025B9
▹
trianglerighteq;
U+022B5
⊵
tridot;
U+025EC
◬
trie;
U+0225C
≜
triminus;
U+02A3A
⨺
TripleDot;
U+020DB
◌⃛
triplus;
U+02A39
⨹
trisb;
U+029CD
⧍
tritime;
U+02A3B
⨻
trpezium;
U+023E2
⏢
Tscr;
U+1D4AF
𝒯
tscr;
U+1D4C9
𝓉
TScy;
U+00426
Ц
tscy;
U+00446
ц
TSHcy;
U+0040B
Ћ
tshcy;
U+0045B
ћ
Tstrok;
U+00166
Ŧ
tstrok;
U+00167
ŧ
twixt;
U+0226C
≬
twoheadleftarrow;
U+0219E
↞
twoheadrightarrow;
U+021A0
↠
Uacute;
U+000DA
Ú
Uacute
U+000DA
Ú
uacute;
U+000FA
ú
uacute
U+000FA
ú
Uarr;
U+0219F
↟
uArr;
U+021D1
⇑
uarr;
U+02191
↑
Uarrocir;
U+02949
⥉
Ubrcy;
U+0040E
Ў
ubrcy;
U+0045E
ў
Ubreve;
U+0016C
Ŭ
ubreve;
U+0016D
ŭ
Ucirc;
U+000DB
Û
Ucirc
U+000DB
Û
ucirc;
U+000FB
û
ucirc
U+000FB
û
Ucy;
U+00423
У
ucy;
U+00443
у
udarr;
U+021C5
⇅
Udblac;
U+00170
Ű
udblac;
U+00171
ű
udhar;
U+0296E
⥮
ufisht;
U+0297E
⥾
Ufr;
U+1D518
𝔘
ufr;
U+1D532
𝔲
Ugrave;
U+000D9
Ù
Ugrave
U+000D9
Ù
ugrave;
U+000F9
ù
ugrave
U+000F9
ù
uHar;
U+02963
⥣
uharl;
U+021BF
↿
uharr;
U+021BE
↾
uhblk;
U+02580
▀
ulcorn;
U+0231C
⌜
ulcorner;
U+0231C
⌜
ulcrop;
U+0230F
⌏
ultri;
U+025F8
◸
Umacr;
U+0016A
Ū
umacr;
U+0016B
ū
uml;
U+000A8
¨
uml
U+000A8
¨
UnderBar;
U+0005F
_
UnderBrace;
U+023DF
⏟
UnderBracket;
U+023B5
⎵
UnderParenthesis;
U+023DD
⏝
Union;
U+022C3
⋃
UnionPlus;
U+0228E
⊎
Uogon;
U+00172
Ų
uogon;
U+00173
ų
Uopf;
U+1D54C
𝕌
uopf;
U+1D566
𝕦
UpArrow;
U+02191
↑
Uparrow;
U+021D1
⇑
uparrow;
U+02191
↑
UpArrowBar;
U+02912
⤒
UpArrowDownArrow;
U+021C5
⇅
UpDownArrow;
U+02195
↕
Updownarrow;
U+021D5
⇕
updownarrow;
U+02195
↕
UpEquilibrium;
U+0296E
⥮
upharpoonleft;
U+021BF
↿
upharpoonright;
U+021BE
↾
uplus;
U+0228E
⊎
UpperLeftArrow;
U+02196
↖
UpperRightArrow;
U+02197
↗
Upsi;
U+003D2
ϒ
upsi;
U+003C5
υ
upsih;
U+003D2
ϒ
Upsilon;
U+003A5
Υ
upsilon;
U+003C5
υ
UpTee;
U+022A5
⊥
UpTeeArrow;
U+021A5
↥
upuparrows;
U+021C8
⇈
urcorn;
U+0231D
⌝
urcorner;
U+0231D
⌝
urcrop;
U+0230E
⌎
Uring;
U+0016E
Ů
uring;
U+0016F
ů
urtri;
U+025F9
◹
Uscr;
U+1D4B0
𝒰
uscr;
U+1D4CA
𝓊
utdot;
U+022F0
⋰
Utilde;
U+00168
Ũ
utilde;
U+00169
ũ
utri;
U+025B5
▵
utrif;
U+025B4
▴
uuarr;
U+021C8
⇈
Uuml;
U+000DC
Ü
Uuml
U+000DC
Ü
uuml;
U+000FC
ü
uuml
U+000FC
ü
uwangle;
U+029A7
⦧
vangrt;
U+0299C
⦜
varepsilon;
U+003F5
ϵ
varkappa;
U+003F0
ϰ
varnothing;
U+02205
∅
varphi;
U+003D5
ϕ
varpi;
U+003D6
ϖ
varpropto;
U+0221D
∝
vArr;
U+021D5
⇕
varr;
U+02195
↕
varrho;
U+003F1
ϱ
varsigma;
U+003C2
ς
varsubsetneq;
U+0228A U+0FE00
⊊︀
varsubsetneqq;
U+02ACB U+0FE00
⫋︀
varsupsetneq;
U+0228B U+0FE00
⊋︀
varsupsetneqq;
U+02ACC U+0FE00
⫌︀
vartheta;
U+003D1
ϑ
vartriangleleft;
U+022B2
⊲
vartriangleright;
U+022B3
⊳
Vbar;
U+02AEB
⫫
vBar;
U+02AE8
⫨
vBarv;
U+02AE9
⫩
Vcy;
U+00412
В
vcy;
U+00432
в
VDash;
U+022AB
⊫
Vdash;
U+022A9
⊩
vDash;
U+022A8
⊨
vdash;
U+022A2
⊢
Vdashl;
U+02AE6
⫦
Vee;
U+022C1
⋁
vee;
U+02228
∨
veebar;
U+022BB
⊻
veeeq;
U+0225A
≚
vellip;
U+022EE
⋮
Verbar;
U+02016
‖
verbar;
U+0007C
|
Vert;
U+02016
‖
vert;
U+0007C
|
VerticalBar;
U+02223
∣
VerticalLine;
U+0007C
|
VerticalSeparator;
U+02758
❘
VerticalTilde;
U+02240
≀
VeryThinSpace;
U+0200A
Vfr;
U+1D519
𝔙
vfr;
U+1D533
𝔳
vltri;
U+022B2
⊲
vnsub;
U+02282 U+020D2
⊂⃒
vnsup;
U+02283 U+020D2
⊃⃒
Vopf;
U+1D54D
𝕍
vopf;
U+1D567
𝕧
vprop;
U+0221D
∝
vrtri;
U+022B3
⊳
Vscr;
U+1D4B1
𝒱
vscr;
U+1D4CB
𝓋
vsubnE;
U+02ACB U+0FE00
⫋︀
vsubne;
U+0228A U+0FE00
⊊︀
vsupnE;
U+02ACC U+0FE00
⫌︀
vsupne;
U+0228B U+0FE00
⊋︀
Vvdash;
U+022AA
⊪
vzigzag;
U+0299A
⦚
Wcirc;
U+00174
Ŵ
wcirc;
U+00175
ŵ
wedbar;
U+02A5F
⩟
Wedge;
U+022C0
⋀
wedge;
U+02227
∧
wedgeq;
U+02259
≙
weierp;
U+02118
℘
Wfr;
U+1D51A
𝔚
wfr;
U+1D534
𝔴
Wopf;
U+1D54E
𝕎
wopf;
U+1D568
𝕨
wp;
U+02118
℘
wr;
U+02240
≀
wreath;
U+02240
≀
Wscr;
U+1D4B2
𝒲
wscr;
U+1D4CC
𝓌
xcap;
U+022C2
⋂
xcirc;
U+025EF
◯
xcup;
U+022C3
⋃
xdtri;
U+025BD
▽
Xfr;
U+1D51B
𝔛
xfr;
U+1D535
𝔵
xhArr;
U+027FA
⟺
xharr;
U+027F7
⟷
Xi;
U+0039E
Ξ
xi;
U+003BE
ξ
xlArr;
U+027F8
⟸
xlarr;
U+027F5
⟵
xmap;
U+027FC
⟼
xnis;
U+022FB
⋻
xodot;
U+02A00
⨀
Xopf;
U+1D54F
𝕏
xopf;
U+1D569
𝕩
xoplus;
U+02A01
⨁
xotime;
U+02A02
⨂
xrArr;
U+027F9
⟹
xrarr;
U+027F6
⟶
Xscr;
U+1D4B3
𝒳
xscr;
U+1D4CD
𝓍
xsqcup;
U+02A06
⨆
xuplus;
U+02A04
⨄
xutri;
U+025B3
△
xvee;
U+022C1
⋁
xwedge;
U+022C0
⋀
Yacute;
U+000DD
Ý
Yacute
U+000DD
Ý
yacute;
U+000FD
ý
yacute
U+000FD
ý
YAcy;
U+0042F
Я
yacy;
U+0044F
я
Ycirc;
U+00176
Ŷ
ycirc;
U+00177
ŷ
Ycy;
U+0042B
Ы
ycy;
U+0044B
ы
yen;
U+000A5
¥
yen
U+000A5
¥
Yfr;
U+1D51C
𝔜
yfr;
U+1D536
𝔶
YIcy;
U+00407
Ї
yicy;
U+00457
ї
Yopf;
U+1D550
𝕐
yopf;
U+1D56A
𝕪
Yscr;
U+1D4B4
𝒴
yscr;
U+1D4CE
𝓎
YUcy;
U+0042E
Ю
yucy;
U+0044E
ю
Yuml;
U+00178
Ÿ
yuml;
U+000FF
ÿ
yuml
U+000FF
ÿ
Zacute;
U+00179
Ź
zacute;
U+0017A
ź
Zcaron;
U+0017D
Ž
zcaron;
U+0017E
ž
Zcy;
U+00417
З
zcy;
U+00437
з
Zdot;
U+0017B
Ż
zdot;
U+0017C
ż
zeetrf;
U+02128
ℨ
ZeroWidthSpace;
U+0200B
Zeta;
U+00396
Ζ
zeta;
U+003B6
ζ
Zfr;
U+02128
ℨ
zfr;
U+1D537
𝔷
ZHcy;
U+00416
Ж
zhcy;
U+00436
ж
zigrarr;
U+021DD
⇝
Zopf;
U+02124
ℤ
zopf;
U+1D56B
𝕫
Zscr;
U+1D4B5
𝒵
zscr;
U+1D4CF
𝓏
zwj;
U+0200D
zwnj;
U+0200C