An introduction to biogas and biomethane – Outlook for biogas and biomethane: Prospects for organic growth – Analysis – IEA
The biomethane industry is currently very small, although it is generating growing amounts of interest in several countries for its potential to deliver clean energy to a wide array of end users, especially when this can be done using existing infrastructure.
Currently around 3.5 Mtoe of biomethane are produced worldwide. The vast majority of production lies in European and North American markets, with some countries such as Denmark and Sweden boasting more than 10% shares of biogas/biomethane in total gas sales. Countries outside Europe and North America are catching up quickly, with the number of upgrading facilities in Brazil, China and India tripling since 2015.
Biomethane represents about 0.1% of natural gas demand today; however, an increasing number of government policies are supporting its injection into natural gas grids and for decarbonising transport. For example, Germany, Italy, the Netherlands and the United Kingdom have all introduced support for biomethane in transport. Brazil’s RenovaBio programme has a target of reducing the carbon intensity of fuels in the transport sector by 10% by 2028. Subnational schemes are also emerging, such as low-carbon fuel standards in the US state of California and in British Columbia, Canada.
The percentage of biogas produced that is upgraded varies widely between regions: in North America it is around 15% while in South America it is over 35%; in Europe, the region that produces the most biogas and biomethane, around 10% of biogas production is upgraded (although in countries such as Denmark and Sweden the percentages are much higher); in Asia, the figure is 2%.
The main co‑product of biogas upgrading is CO2, which is produced in a relatively concentrated form and therefore could be used for industrial or agricultural purposes or combined with hydrogen to yield an additional stream of methane. Another option would be to store it underground, in which case the biomethane would be a CO2-negative source of energy.
As noted above, the alternative method to produce biomethane is through thermal gasification of biomass. There are several biomass gasification plants currently in operation, but these are mostly at demonstration scale producing relatively small volumes. Some of these plants have struggled to achieve stable operation, as a result of the variable quality and quantity of feedstock. Since this is a less mature technology than anaerobic digestion, thermal gasification arguably offers greater potential for technological innovation and cost reductions. Prospects would be enhanced if incumbent gas producers were to commit resources to its development, as it would appear a better fit with their knowledge and technical expertise.
The rising interest in biomethane means that the number of operating plants worldwide (both biogas upgrading and biomass gasification facilities) is expected to exceed 1 000 in the course of 2020. Around 60% of plants currently online and in development inject biomethane into the gas distribution network, with a further 20% providing vehicle fuel. The remainder provides methane for a variety of local end uses.